Posted by: Sk | February 17, 2009

1 Quelques points de répére dans un language astrophysicien

Si toute matiere peut se convertir en energie et viceversa (Einstein), alors la matiere n’est rien d’autre qu’une expression particuliere de l’energie ou viceversa. (On pourrait dire que la matiere n’est qu’un energie plus lente dans une logique de mouvement organisée par des poles internes = neutrons.)

Si les quanta disent que le foton est a la fois une particule et une frequence, la théorie ne finit par dire que la meme chose que Einstein mais sans la formule de transformation.

Vu d’un point de vue imagé: je suis riche, tu es riche. Dans la théorie des quanta tu es meme que moi. C’est a dire (en logique de language) que le meme nom détermine la meme nature. Mais est-ce bien vrai? Si c’est une richesse aquise par des moyens legaux ou une richesse obtenue par des moyens illegaux (meme cas de figure que pour le combat de sumo) peut- on dire que l’essence de la richesse soit la meme? L’une est organisatrice, l’autre ne l’est point. L’une a pour cause un savoir, l’autre un pouvoir de destruction. L’une a comme fin un equilibre general, l’autre produit une destruction du tout dans le prevaloir d’un soi en particulier.

En fait, la théorie des essences aristotelicienne ne serait qu’une theorie du mouvement ou de l’evolution s’il ne l’avait pas figé dans l’espace. Car: je me mouille parcequ’il pleut, est l’association de deux concepts (mouiller/pleuvoir) de par un meme essence s’associable nécessairement aux deux, de telle sorte que la consequence ressort de par la liason interne de la meme essence. Si on y ajoute une finalité on arrive rapidement a une theorie de l’evolution humaine ou du vivant, dans laquelle les chainons se font de par la liaison interne essentielle d’unités séparées tendant vers … (a definir).

Quoi qu’il en soit, c’est la perspective utilisée par le sujet qui determine un résultat, et si la lumiere peut etre considérée selon Einstein tant en tant que frequence comme en tant que particule, c’est un fait que c’est l’angle de vision du phenomene qui determine le resultat et non pas le phenomene lui meme. En essayant de considerer le foton depuis deux angles en meme temps, la seule chose qu’on a fait c’est de brouiller les données de telle sorte qu’un certain nombre de phénoménes n’ont meme pas pu etre pris en considération.

Si la lumiere est une frequence, elle interagit avec toute sorte de frequences a sa maniere propre. A mon avis, la lumiere comporte de frequences verticales (d’emission avec un pole), tandis que l’electronique comporte des frequences horizontales (de transmission avec deux poles), et l’interaction des deux produit des champs electromagnetiques qui s’amassent comme les nuages dans les espaces (aleatoire), des fois oui, des fois non, plus aujourd’hui et moins demain et se dissolvent peu aprés. S’il se trouve qu’un engin dépendant de ressources electroniques rentre dans un de ces ‘nuages’, cela anéantit le systeme electronique produisant sa chute (Challenger, Phantom US en Serbie, Mirage présidentiel grec, etc). C’est un fait que ce dernier se redressa a peu de metres du sol, comme s’il etait sorti de quelquepart pouvant redresser sa course, trop tard.

Il se pourrait en plus que ce phénoméne ne soit accru par la présence d’antennes a frequentialisation différente a peu de distance l’une de l’autre, comme c’est le cas a Kerdilia, dans la province de Serres, Macedoine grecque, a quelques kilometres de Efkarpia, produisant une serie de phenomenes pour le moins bizarre, comme les changement des temperature, l’apparition d’éclairs dans un ciel clair, des tempetes a une proximité etonnante, entre autres.

Il se peut, il semblerait, en plus, que la luminosité de l’espace prise en photographie attire un certain nombre de frequences inconnues pour la terre sur l’endroit ou elles se trouvent produisant des phenomenes visuels inattendus en interaction avec des ordinateurs qui ne sont pas nécessairement ratachés a un systeme de transmission de frequences (internet) de par les frequences inherentes a l’emission de lumiere par example de quelques desk tops en 3 dimensions et pourraient etre a l’origine de perturbations graves non pas seulement de la vue mais aussi des systemes de régulation interne des ordinateurs (BIOS ou Systeme Operateur), prenant l’allure d’un virus qui fonderait les chaines d’interconnexion (membranes) ou catégorisation interne ou, produirait des leves changements dans les systemes des comptes.

Que la lumiere interagit avec le systeme electronique en emettant des frequences qui peuvent s’attraper par certaines fonctions pourrait etre un indice justifiant l’adaptation des theories a cette evidence. Il serait possible, en plus, de trouver evidence selon laquelle l’interaction de certaines frequences avec d’autres (bleu et jaune), re-emet les fréquence vers l’espace, au lieu de les accumuler dans la sphere terrestre. Ce qui ne serait pas le cas si la lumiere elle meme est blanche ou bleue.

Si j’arrive a accumuler suffisamment d’information sur la theorie electronique et electromagnetique, on pourrait eventuellement etablir que le traitement actuel des deux conduit a une séparation accidentelle de deux elements de quelques frequences pouvant conduire a des desastres quasi universels (trou de l’ozon, altération des données climatiques). Il se peut que ce ne soit pas grand chose d’induire un retablissement d’equilibres plus naturels, mais entre temps je conseillerais que quelques idiots voulant prendre forme d’informaticiens soient eloignés de l’activité en question: la plupart des poles d’attraction electromagnetiques semblent se constituer autour de programmes ou parties de programme ‘craqués’, qui, en ayant des elements d’origine differente, creent une tension electromagnetique supérieure a celle qui serait en soi normal. Et, puisqu’il y a peu a faire en ce moment, ce serait en tout point adequat, eventuellement, de se regir par des strictes criteres esthétiques pour retablir certains rapports (on ne met jamais, mais jamais du bleu marin avec du noir, et le rouge va avec du noir seulement en presence de quelque jaune, etc.)

Mais, bon. Ce qui reste encore est peut etre plus grave, mais quoi faire. On fera comme si on avait du temps, encore.

dibujo-51

dibujo-7

dibujo-61

Comments: wave is neither matter nor energy but just ‘a pressure’ which is to say a ‘geometrical’ (abstract) item that may be used as geometrical figures (cubes, circles, etc) to measure, but not to determine the nature of a phenomenon

The wave must be the wave of something: water, radiation, etc.

What is the ‘matter’ of sound?

Hypothesis: if the ‘sender’ of sound is transmitting through electrons, then the frequency in the air must be some kind of non circular, ‘radiating’ (maintaining one sole nature through different environments) electron or energy form, or using existing ‘that’ in order to be transmitted through pressure – perhaps some alternative function of common electrons causing eventually some polarization

Sound

Sound is a disturbance of mechanical energy that propagates through matter as a wave (through fluids as a compression wave, and through solids as both compression and shear waves). Sound is further characterized by the generic properties of waves, which are frequency, wavelength, period, amplitude, speed, and direction (sometimes speed and direction are combined as a velocity vector, or wavelength and direction are combined as a wave vector).Humans perceive sound by the sense of hearing. By sound, we commonly mean the vibrations that travel through air and are audible to people. However, scientists and engineers use a wider definition of sound that includes low and high frequency vibrations in the air that cannot be heard by humans, and vibrations that travel through all forms of matter, gases, liquids, solids, and plasmas.The matter that supports the sound is called the medium. Sound propagates as waves of alternating pressure, causing local regions of compression and rarefaction. Particles in the medium are displaced by the wave and oscillate. The scientific study of the absorption and reflection of sound waves is called acoustics.

Noise is often used to refer to an unwanted sound. In science and engineering, noise is an undesirable component that obscures a wanted signal.

Perception of sound


 

This image has an uncertain copyright status and is pending deletion. You can comment on the removal.Sound is perceived through the sense of hearing. Humans and many animals use their ears to hear sound, but loud sounds and low-frequency sounds can be perceived as vibrations by other parts of the body via the sense of touch. Sounds are used in several ways, notably for communication through speech and music. They can also be used to acquire information about properties of the surrounding environment such as spatial characteristics and presence of other animals or objects. For example, bats use echolocation, ships and submarines use sonar and most humans acquire some spatial information by the way in which they perceive sounds. Elephants and alligators use very low frequency sounds to communicate, and mice, bats, cetaceans, and some insects use high frequency sounds, both outside the human hearing range.Humans can generally hear sounds with frequencies between 20 Hz and 20 kHz (the audio range) although this range varies significantly with age, occupational hearing damage, and gender; nearly all people in the developed world can no longer hear 20,000 Hz by the time they are teenagers, and progressively lose the ability to hear both higher frequencies and low level sounds as they get older. Most human speech communication takes place between 200 and 8,000 Hz and the human ear is most sensitive to frequencies around 1000-3,500 Hz. Sound above the hearing range is known as ultrasound, and that below the hearing range as infrasound.The amplitude of a sound wave is specified in terms of its pressure. The human ear can detect sounds with a very wide range of amplitudes and so a logarithmic decibel amplitude scale is used. The quietest sounds that humans can hear have an amplitude of approximately 20 µPa (micropascals) or a sound pressure level (SPL) of 0 dB re 20 µPa (often incorrectly abbreviated as 0 dB SPL). Prolonged exposure to sound pressure levels exceeding 85 dB can permanently damage the ear, resulting in tinnitus and hearing impairment. Sound levels in excess of 130 dB are more than the human ear can safely withstand and can result in serious pain and permanent damage. At very high amplitudes, sound waves exhibit nonlinear effects, including shock.Just how sound travels, or propagates, is difficult to imagine for many, as sound is invisible. Sound is an oscillating pressure wave, in which air is compressed, then decompressed, as sound moves away from its origin. Imagine a tube exposed to air whereby sound travels longitudinally through it. The air acts rather like a Slinky spring would if confined to the tube. As sound is generated at one end, a pressure wave will begin to travel through the air in the tube. Watching an earth worm move by pulsating its long body may help the imagination. The cycle length (i.e., the distance between successive ‘bunched up parts of the slinky’) is a particular sound’s wave length, though most real world sounds are a mixture of many wave lengths. Low frequency sounds (eg, low organ or piano notes, bass guitars, etc) have large wave lengths, on the order of 10-50 feet long. High frequency sounds (eg, some parts of the noise associated with transient sounds as in many percussion instruments), have wave lengths as small as 1/2 inch.

 

 

 

 

 Speed of sound

The speed at which sound travels depends on the medium through which the waves are passing, and is often quoted as a fundamental property of the material. In general, the speed of sound is proportional to the square root of the ratio of the elastic modulus (stiffness) of the medium and its density. Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In air at sea level, the speed of sound is approximately 769.5 mph (1,238.3 km/h) at 68 °F (20 °C),[1] in water 3,315.1 mph (5,335.1 km/h) at 20 °C (68 °F),[2] and in steel 13,332.1 mph (21,446 km/h)[3] . The speed of sound is also slightly sensitive (a second order effect) to the sound amplitude, which means that there are nonlinear propagation effects, such as the production of harmonics and mixed tones not present in the original sound. (see parametric array).

 Sound pressure

Sound pressure is the pressure deviation from the local ambient pressure caused by a sound wave. Sound pressure can be measured using a microphone in air and a hydrophone in water. The SI unit for sound pressure is the pascal (symbol: Pa). The instantaneous sound pressure is the deviation from the local ambient pressure caused by a sound wave at a given location and given instant in time. The effective sound pressure is the root mean square of the instantaneous sound pressure averaged over a given interval of time. In a sound wave, the complementary variable to sound pressure is the acoustic particle velocity. For small amplitudes, sound pressure and particle velocity are linearly related and their ratio is the acoustic impedance. The acoustic impedance depends on both the characteristics of the wave and the medium. The local instantaneous sound intensity is the product of the sound pressure and the acoustic particle velocity and is, therefore, a vector quantity in time.The loudest sound ever in air reported was the 1883 volcanic eruption of Krakatoa, whereby sound levels reached 180 dBSPL at a distance of 100 miles (160 km).

Sound pressure level

As the human ear can detect sounds with a very wide range of amplitudes, sound pressure is often measured as a level on a logarithmic decibel scale.The sound pressure level (SPL) or Lp is defined aswhere p is the root-mean-square sound pressure and p0 is a reference sound pressure. Commonly used reference sound pressures, defined in the standard ANSI S1.1-1994, are 20 µPa in air and 1 µPa in water. Without a specified reference level, a value expressed in decibels cannot represent a sound level.

Since the human ear does not have a flat spectral response, sound pressure levels are often frequency weighted so that the measured level will match perceived levels more closely. The International Electrotechnical Commission (IEC) has defined several weighting schemes. A-weighting attempts to match the response of the human ear to noise and A-weighted sound pressure levels are labeled dBA. C-weighting is used to measure peak levels.

 

 

dibujo-8

Generation possible d’une frequence cosmique dite ‘Zwickel’

dibujo-9

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Categories

%d bloggers like this: